• Exoplanètes par centaines

    sciences de l'univers

     Exoplanètes

     

    “Nous lançons une véritable bombe dans le champ des exoplanètes” déclare Amaury Triaud, un étudiant en thèse à l’Observatoire de Genève qui a dirigé la plus grande partie de ces campagnes d’observation avec Andrew Cameron et Didier Queloz. 

    Les astronomes pensent que les planètes se forment dans les disques de poussière et de gaz qui entourent les jeunes étoiles. Ces disques protoplanétaires tournent dans le même sens que leur étoile et l’on supposait jusqu’à maintenant que toutes les planètes formées dans le DISQUE étaient plus ou moins en orbite dans le même plan et qu’elles se déplaçaient sur leur orbite dans le même sens que celui de la rotation de leur étoile. C’est notamment le cas pour les planètes du Système solaire. 

    Suite à la première détection des neuf planètes avec la caméra "Wide Angle Search for Planets (WASP,  cette équipe d’astronomes a utilisé le spectrographe HARPS sur le télescope (Un télescope de 3,6 mètres de diamètre de l’ESO à l’Observatoire de La Silla au Chili, avec des données du télescope Suisse Euler, également installé à La Silla ainsi que des données provenant d’autres télescopes, afin de confirmer la découverte de ces exoplanètes détectées à la fois dans la nouvelle et l’ancienne campagne d’observation et de les caractériser.

    Étonnamment, quand les astronomes de cette équipe ont combiné les nouvelles données avec les anciennes observations ils ont trouvé que les orbites de plus de la moitié de tous les Jupiters chauds étudiés n’étaient pas alignées avec l’axe de rotation de leurs planètes. Ils ont même découvert que six exoplanètes de cette longue étude (parmi lesquelles deux sont de nouvelles découvertes) avaient un mouvement rétrograde: elles tournent autour de leurs étoiles dans la "mauvaise" direction. 

    "Ces nouveaux résultats défient réellement la pensée conventionnelle qui veut que les planètes doivent toujours être en orbite dans la même direction que celle de la rotation de leur étoile," précise Andrew Cameron de l’Université de St Andrews, qui présente ces nouveaux résultats au "RAS National Astronomy Meeting (NAM2010)" à Glasgow cette semaine.

      Depuis la découverte des premiers Jupiters chauds, il y a quinze ans, leur origine est restée une énigme. Ce sont des planètes ayant une masse équivalente ou supérieure à celle de Jupiter, mais dont l’orbite est beaucoup plus proche de leur soleil. Les astronomes pensent que les cœurs des planètes géantes se forment à partir d’un mélange de particules de glace et de roche que l’on trouve uniquement dans les confins des systèmes planétaires. Les Jupiters chauds se formeraient donc loin de leur étoile et migreraient par la suite vers l’intérieur afin de se mettre en orbite beaucoup plus près de leur étoile. De nombreux astronomes pensent que cela est dû aux interactions gravitationnelles avec le disque de poussière au sein duquel ces planètes se sont formées. Ce scénario ce déroule sur quelques millions d’années et aboutit à une orbite alignée avec l’axe de rotation de l’étoile "hôte". Il permet également la formation ultérieure de planètes rocheuses comme la Terre, mais ceci ne permet malheureusement pas de rendre compte des nouvelles observations. 

    Pour prendre en compte les nouvelles planètes rétrogrades, une théorie alternative de migration suggère que la proximité des Jupiters chauds de leur étoile n’est absolument pas due aux interactions avec le disque de poussière, mais à un lent processus d’évolution impliquant une lutte acharnée de forces gravitationnelles avec des planètes plus distantes ou des compagnons stellaires, s’étendant sur des centaines de millions d’années. Ces "perturbations" propulsent ainsi une planète géante (Branche asymptotique des géantes, naines blanches, nébuleuses planétaires) sur une orbite allongée et inclinée. Cette planète va alors subir les effets de marées, perdant de l’énergie à chaque fois qu’elle s’approche de son étoile. Elle pourrait finalement se retrouver positionnée proche de son étoile, sur une orbite pratiquement circulaire, mais dont l’inclinaison est aléatoire. "Un effet secondaire spectaculaire de ce processus est qu’il pourrait anéantir une planète semblable à la Terre dans ce système planétaire," déclare Didier Queloz de l’Observatoire de Genève.

     

    Des compagnons plus distants et plus massifs ont d’ores et déjà été détectés dans le cas de deux des nouvelles planètes rétrogrades découvertes, ce qui pourrait potentiellement être la cause de ce bouleversement. Ces nouveaux résultats pourraient déclencher une recherche intensive de nouveaux corps dans d’autres systèmes planétaires. 

    Cette recherche a été présentée lors du RAS National Astronomy Meeting (NAM2010) qui a lieu cette semaine à Glasgow, en Ecosse. Neuf articles soumis à des journaux internationaux seront présentés à cette occasion parmi lesquels quatre utilisent des données fournies par les équipements de l’ESO. Cette conférence a également été l’occasion de récompenser le consortium WARPS de prix 2010 du meilleur travail d’équipe de la Royal Astronomical Society. 

     

    Notes: 

    Le nombre actuel d’exoplanètes connues est de 452. 

    [2] Les neuf nouvelles exoplanètes ont été découvertes par le "Wide Angle Search for Planets (WASP)". WASP comprend deux observatoires robotisés, chacun consistant en huit caméras grand angle qui scrutent le ciel en permanence et simultanément à la recherche de signes de transits planétaires. Un transit à lieu quand une planète passe devant son étoile, bloquant temporairement une partie de sa lumière ; Les huit caméras grand angle permettent d’observer des millions d’étoiles simultanément afin de détecter ces signes peu fréquents de transit. Les caméras de WAPS sont exploitées par un consortium comprenant la Queen’s University Belfast, les Universités de Keele, Leicester et St Andrews, l’Open University, l’Isaac Newton Group à La Palma et l’Instituto Astrofisica Canarias. 

    [3] Pour confirmer et caractériser les nouvelles planètes à transit, il est nécessaire de faire un suivi avec la méthode des vitesses radiales afin de détecter l'oscillation de l’étoile autour de son centre de gravité qui est en fait le centre de gravité du système étoile-planète.

    Ce suivi est effectué par un réseau mondial de télescopes équipés avec des spectromètres très sensibles. Dans l’hémisphère nord. Le télescope “ Nordic Optical Telescope” aux Iles Canaries et le spectrographe SOPHIE installé sur le télescope de 1.93-mètres à l’Observatoire de Haute-Provence en France ont mené cette recherche. 

    Dans l’hémisphère sud Le chasseur d’exoplanètes HARPS sur le télescope de 3,6 mètres de l’ESO et le spectrographe CORALIE sur le télescope suisse Euler, tous les deux à La Silla, ont été utilisés pour confirmer les nouvelles planètes et pour mesurer l’angle d’inclinaison de l’orbite de chaque planète par rapport à l’équateur de leurs étoiles.

     Les télescopes robotiques Faulkes de l’Observatoire de Las Cumbres, situés à Hawaï et en Australie, ont fourni les mesures de luminosité (La luminosité désigne la caractéristique de ce qui émet ou réfléchit la lumière.) qui permettent de mesurer la taille des planètes.

     

    Les observations pour les suivis des candidats exoplanètes WARPS ont été obtenues au télescope suisse Euler à La Silla, au Chili (en collaboration avec des chercheurs de l’Observatoire de Genève), au télescope Nordic Optical Telescope à La Palma et au télescope de 1,93 mètre de l’Observatoire de Haute Provence en France (en collaboration avec des chercheurs à l’Institut d’Astrophysique de Paris. 

    Les études de l’angle d’inclinaison de l’orbite des planètes WARPS ont été effectuées par l’instrument HARPS sur le télescope de 3,6 mètres de l’ESO et par l’instrument CORALIE sur le télescope Suisse Euler, dans l’hémisphère sud et à l’Observatoire de Tautenburg, à l’Observatoire Mc Donald et au Nordic Optical Telescope dans l’hémisphère Sud. 

    [4] Les Jupiters chaud sont des planètes en orbite autour d’autres étoiles. Elles ont des masses similaires ou plus importantes que Jupiter, mais leurs orbites sont beaucoup plus proches de leur étoile que n’importe quelle planète de notre Système solaire. Etant donné qu’elles sont à la fois grandes et proches de leur étoile, elles sont plus faciles à détecter par leur effet gravitationnel sur leur étoile et elles ont aussi plus de chance de transiter devant le disque de l’étoile. La plupart des premières exoplanètes découvertes sont de cette catégorie.

    Où en est la recherche des exoplanètes ?

    Après cette découverte de 5 exoplanètes, nouvelle mise au point : 

    Source :techno-science.net et lepouvoirmondial.com/ 

    Où en est la recherche des exoplanètes ? 

    -Nombre total d'exoplanètes découvertes à ce jour : 408 (Liste des 408, de la plus proche à la plus éloignée) 

    -Parmi ces 408, la plupart sont des géantes gazeuses semblables à Neptune ou Jupiter (dont les 5 découvertes par Kepler), mais 16 sont telluriques (Liste des 16, de la plus proche à la plus éloignée) 

    -Parmi ces 16, la plus petite fait 1,9 fois la taille de la Terre : Gliese 581e 

    Déclaration de Jon Morse, directeur de la division d'astrophysique de la Nasa :

    "Ce n'est qu'une question de temps avant que le télescope ne détecte des planètes extra-solaires de plus en plus petites (...) avant de découvrir la première planète soeur de la Terre" 

    Rappel très important : "la majorité des planètes découvertes à ce jour se situent dans un rayon de 300 années-lumière autour du Soleil". Autrement dit une minuscule zone de la Voie Lactée, donc il y a encore énormément de planètes à découvrir.

    Il n’a pas encore un an, et déjà cinq exoplanètes à son tableau de chasse. Elles ont été baptisées 4b, 5b, 6b, 7b et 8b et complètent la liste des 415 exoplanètes déjà détectées grâce à d’autres télescopes. 

    Le télescope Kepler a été lancé par la NASA en mars 2009 pour trouver des planètes aux caractéristiques proches de celles de la Terre, où la vie serait possible. Ces cinq premières planètes sont toutefois trop chaudes pour que la vie y soit apparue. Elles sont en effet trop proches de leurs étoiles qui sont plus chaudes que le Soleil… Leur température va de 1 200 à 1 648 °C. Une température à ne pas mettre un être vivant dehors. [Edit : un être vivant tel qu’on l’imagine… cf commentaires] 

    Cité par l’Agence France Presse, William Borucki, le responsable de l’équipe scientifique de Kepler, est ravi des découvertes faites grâce à son rejeton : 

    “Ces découvertes montrent que les instruments fonctionnent bien et que Kepler pourra remplir tous ses objectifs. Ces observations permettent de mieux comprendre comment les systèmes planétaires se forment et évoluent à partir des disques de gaz et de poussière cosmique pour donner naissance aux étoiles et à leurs planètes.”

    Même satisfecit pour Jon Morse, directeur de la division d’astrophysique de la NASA : 

    “Nous nous attendions à ce que Kepler découvre en premier lieu de telles exoplanètes. Ce n’est qu’une question de temps avant que le télescope ne détecte des planètes extrasolaires de plus en plus petites (…) avant de découvrir la première planète sœur de la Terre.” 

    L’observation des planètes n’est pas directe. Pour les repérer, Kepler scrute quelque 100 000 étoiles sur les millions qui se trouvent dans son champ de vision. Le passage d’une planète entre l’une de ces étoiles et le satellite provoque une infime variation de la luminosité de cette étoile. C’est cette variation que Kepler est capable de détecter et de mesurer, pour en déduire qu’une planète est passée par là. C’est ce qu’on appelle la méthode du transit. Le photomètre de Kepler est un assemblage de 42 capteurs CCD de très grande précision qui peuvent déceler des fluctuations de l’ordre de 0,002 % de la luminosité. 

    Identifier une planète n’est pas tout, il faut en déterminer les caractéristiques. L’une de ces caractéristiques, la distance qui sépare cette planète de son soleil, est déterminante pour les scientifiques dans leur quête d’une planète habitée ou habitable. Les données fournies par Kepler permettent de connaître la période de révolution de la planète, puisque la variation de luminosité de l’étoile se répète à intervalles réguliers. Grâce à la troisième loi de Kepler, justement, on peut déduire de la période de révolution la distance qui sépare la planète du centre de son orbite, c’est-à-dire de son soleil. On peut donc savoir si la minuscule planète située à des milliers d’années-lumière se situe dans la zone d’habitabilité de son étoile, ni trop près ni trop loin.

     Source sciences.blog.lemonde 

     

     "La source de nos informations est indiquée pour chaque parution, mais au cas où l'auteur de vidéos, articles ou photos souhaiterait ne plus les voir figurer sur le site, qu'il nous en avertisse par mail, et nous les retirerons immédiatement"