• Ultra-violet, ce monde invisible

    Mystères de la terre

    LES ULTRA-VIOLET, les infra-rouge,

    CE MONDE INVISIBLE

    Le rayonnement ultraviolet (UV) est un rayonnement électromagnétique d'une longueur d'onde longue entre celle de la lumière visible et celle des rayons X. Le nom signifie « au-delà du violet » (du latin ultra : « au-delà de »), le violet étant la couleur de fréquence la plus élevée (et donc de longueur d'onde la plus courte) de la lumière visible.  

    Les Ultra-violet, ce monde invisible

    Les ultraviolets ont été découverts en 1801 par le physicien allemand Johann Wilhelm Ritter d'après leur action chimique sur le chlorure d'argent. Les ultraviolets peuvent être subdivisés en UV proches (380-200 nm de longueur d'onde) et ultraviolets extrêmes (200-100 nm). La gamme des rayons UV est souvent subdivisée en UV-A (400-315 nm), UV-B (315-280 nm) et UV-C (280-100 nm). Les ultraviolets sont la cause du bronzage et à haute dose sont nocifs pour la santé humaine. Ils peuvent provoquer des cancers cutanés tel que le mélanome, provoquer un vieillissement prématuré de la peau (rides), des brûlures (coup de soleil), des cataractes …

    Près de 5 % de l'énergie du Soleil est émise sous forme de rayonnement UV. Ces rayons UV sont classés dans trois catégories en fonction de leur longueur d'onde : les UV-A, UV-B et UV-C. Toutefois, en raison de l'absorption des UV par la couche d'ozone de l'atmosphère, 99 % de la lumière UV qui atteint la surface de la Terre appartient à la gamme des UV-A. Les UV traversent l'atmosphère même par temps froid ou nuageux (ils n'ont rien à voir avec la sensation de chaleur procurée par le Soleil, qui est due aux infrarouges). Ils sont plus nombreux entre 11 h et 16 h et à haute altitude (car en traversant une plus petite distance dans l'atmosphère, ils ont moins de chances d'être interceptés par des molécules d'ozone).

      

    La quantité d'UV-B augmente d'environ 4 % à tous les 300 m de dénivelé. Les UV sont réfléchis par l'eau (5 % des UV réfléchis), le sable (20 % des UV réfléchis), l'herbe (5 % des UV réfléchis) et surtout la neige (85 % des UV réfléchis). Le trou dans la couche d'ozone est potentiellement dangereux en raison de la nocivité importante des ultraviolets. Toutefois, l'Antarctique est touché par ce trou, donc il ne peut avoir un effet que sur un très petit nombre d'être vivants tels que les manchots. L'Arctique est touchée depuis peu, suite à l'hiver très froid entre 2010 et 2011. Dans la majorité de l'Europe, le soleil de midi, le plus agressif, est en été vers 14 h, c'est pourquoi il est déconseillé de s'exposer entre 12 h et 16 h, tout particulièrement à proximité de l'eau ou de la neige qui réverbèrent une partie des UV ou en montagne où les taux d'UV sont plus importants. Les rayon UV donnent des coups de soleil.

    En faible quantité le rayonnement UV est bénéfique et indispensable à la synthèse de vitamine D. Les UV servent également à traiter plusieurs maladies, dont le rachitisme, le psoriasis, l’eczéma. La longueur d'onde d'absorption de la bilirubine se situant à 460 nm, la lumière la plus active pour le traitement de l'ictère se situe dans l'indigo, bleu-violet et non dans l'U.V. contrairement aux idées reçues. En plus haute quantité (lors d'expositions prolongées au soleil), ils peuvent provoquer des cancers cutanés, un vieillissement prématuré de la peau ainsi que des cataractes. L'absorption : lors de leur traversée dans l'atmosphère, une partie des rayons UV est absorbée par les molécules de gaz (par les molécules d'oxygène par exemple).

    Nature Insolite : Les Ultra-violet, ce monde invisible

     Ce phénomène crée de l'énergie capable de provoquer la dissociation de la molécule de gaz en deux autres molécules par exemple. La diffusion : les rayons ultraviolets peuvent aussi être diffusés par les molécules de gaz contenues dans l'atmosphère. Sachant que plus un rayon lumineux a une courte longueur d'onde plus il est diffusé (cela explique que nous percevons le ciel en bleu qui est la couleur de la lumière visible avec la plus courte longueur d'onde), on en conclut que les rayons UV sont fortement diffusés par les gouttelettes d'eau des différentes couches nuageuses. Mais cela n’entraîne pas forcément une baisse de l'intensité lumineuse : les nuages hauts n’entraînent pratiquement pas de baisse de l'intensité tandis que les nuages bas diffusent une grande partie des rayons UV vers le haut. La réflexion : les rayons UV sont réfléchis par le sol en fonction de la nature du sol. On mesure cette réflexion par une fraction que l'on appelle l'albédo comprise entre 0 et 1. La réflexion est particulièrement forte sur la neige (albédo de 0,9 ; 0,85 en UV).

    source : wikipedia

    Nature Insolite : Les Ultra-violet, ce monde invisible

     Et les infra-rouge

    Le nom signifie « en deçà du rouge » (du latin infra : « plus bas »), car l'infrarouge est une onde électromagnétique de fréquence inférieure à celle de la lumière rouge (et donc de longueur d'onde supérieure à celle du rouge qui va de 500 à 780 nm). La longueur d'onde de l'infrarouge est comprise entre 780 nm et 1 000 000 nm (ou encore entre 0,78 μm à 1 000 μm). L'infrarouge est subdivisé en IR proche (PIR : de 0,78 μm à 1,4 μm), IR moyen (MIR : de 1,4 à 3 μm) et IR lointain (de 3 μm à 1 000 μm). Cette classification n'est cependant pas universelle : les frontières varient d'un domaine de compétence à l'autre sans que l'on ne puisse donner raison à qui que ce soit. Le découpage peut être lié à la longueur d'onde (ou à la fréquence) des émetteurs, des récepteurs (détecteurs), ou encore aux bandes de transmission atmosphérique.  

     L'infrarouge est associé à la chaleur car, à température ambiante ordinaire, les objets émettent spontanément des radiations dans le domaine infrarouge ; la relation est modélisée par la loi du rayonnement du corps noir dite aussi loi de Planck. La longueur d'onde du maximum d'émission d'un corps noir porté à une température absolue T (en kelvin) est donnée par la relation 0,002898/T connue sous le nom de loi du déplacement de Wien. Cela signifie qu'à température ambiante ordinaire (T aux environs de 300 K), le maximum d'émission se situe aux alentours de 10 μm, la plage concernée étant 8-13 μm. Placé à la surface terrestre, un télescope observant dans cette gamme de longueur d'onde serait donc aveuglé par le fond thermique émis par les objets environnants, c'est pourquoi on envoie les télescopes infrarouges dans l'espace.

     Cette association entre l'infrarouge et la chaleur n'est cependant due qu'à la gamme de température observée à la surface de la Terre. Il est parfaitement possible de générer un rayonnement infrarouge qui ne soit pas thermique, c'est-à-dire dont le spectre ne soit pas celui du corps noir ; par exemple, les diodes électroluminescentes utilisées dans les télécommandes « n'émettent pas de chaleur ». Le rayonnement infrarouge est intuitivement perceptible par la simple exposition de la peau à la chaleur émise par une source chaude dans le noir, mais il ne fut prouvé qu'en 1800 par William Herschel, un astronome anglais d'origine allemande, au moyen d'une expérience très simple : Herschel a eu l'idée de placer un thermomètre à mercure dans le spectre obtenu par un prisme de verre afin de mesurer la chaleur propre à chaque couleur. Le thermomètre indique que la chaleur reçue est la plus forte du côté rouge du spectre, y compris au-delà de la zone de lumière visible, là où il n'y avait plus de lumière. C'était la première expérience montrant que la chaleur pouvait se transmettre indépendamment d'une lumière visible (ce phénomène était parfois appelé à l'époque la chaleur obscure ou rayonnement sombre). Il a dans le même temps montré qu'un prisme pouvait dévier un rayon calorique.

    source : wikipedia

      

    "La source de nos informations est indiquée pour chaque parution, mais au cas où l'auteur de vidéos, articles ou photos souhaiterait ne plus les voir figurer sur le site, qu'il nous en avertisse par mail, et nous les retirerons immédiatement"